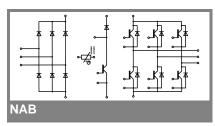


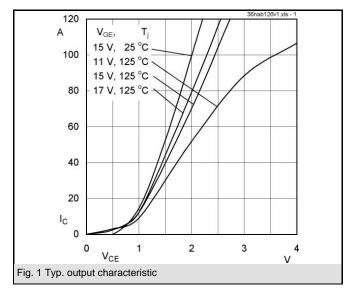
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 36NAB126V1

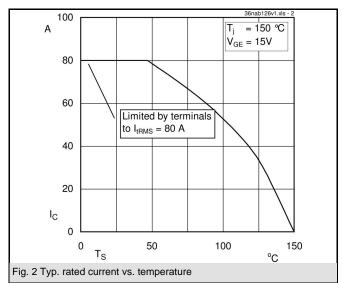
Fe	atu	res

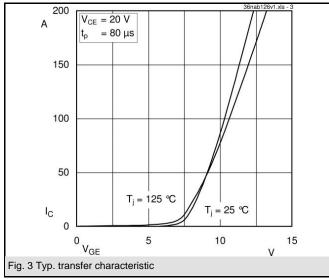

- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

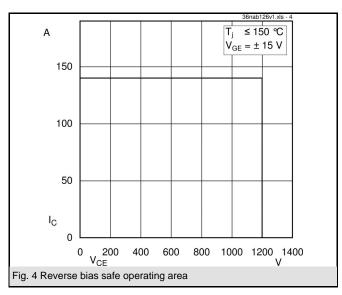
Typical Applications*

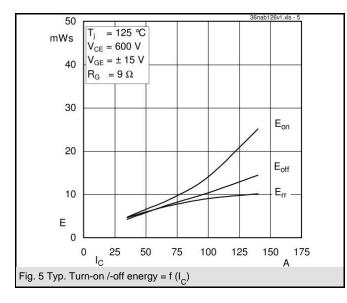
- Inverter up to 36 kVA
- Typical motor power 18,5 kW

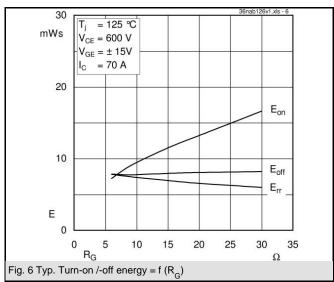

Remarks

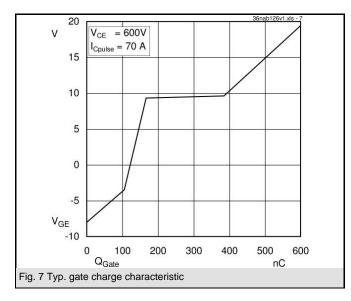

• V_{CEsat}, V_F = chip level value

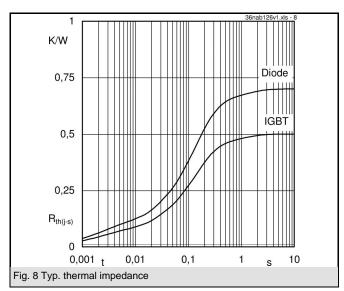


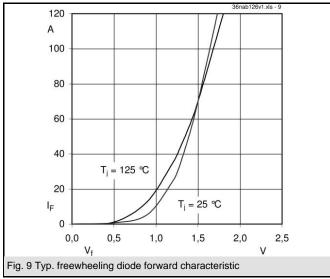

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie						
Symbol	Conditions	Values	Units			
IGBT - Inverter, Chopper						
V_{CES}		1200	V			
I _C	T _s = 25 (70) °C	88 (66)	Α			
I _{CRM}		140	Α			
V_{GES}		± 20	V			
T_j		- 40 + 150	°C			
Diode - Inverter, Chopper						
I _F	T _s = 25 (70) °C	91 (68)	Α			
I _{FRM}		140	Α			
T_{j}		- 40 + 150	°C			
Diode - Rectifier						
V_{RRM}		1600	V			
I _F	T _s = 70 °C	61	Α			
I _{FSM}	t _p = 10 ms, sin 180 °, T _i = 25 °C	700	Α			
i²t	$t_p^r = 10 \text{ ms, sin } 180 ^\circ, T_i^r = 25 ^\circ\text{C}$	2400	A²s			
T_j		- 40 + 150	°C			
Module		·	•			
I _{tRMS}	per power terminal (20 A / spring)	80	Α			
T _{stg}		- 40 + 125	°C			
V _{isol}	AC, 1 min.	2500	V			

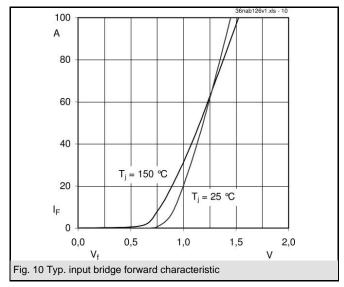

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise spe							
Symbol	Conditions	min.	typ.	max.	Units		
IGBT - Inverter, Chopper							
V _{CEsat}	I _{Cnom} = 70 A, T _j = 25 (125) °C V _{GF} = V _{CF} , I _C = 3 mA	5	1,7 (2) 5,8	2,1 (2,4) 6,5	V		
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 3 \text{ IDA}$ $T_i = 25 (125) ^{\circ}\text{C}$	3	1 (0,9)	1,2 (1,1)	V		
V _{CE(TO)} r _T	$T_i = 25 (125) ^{\circ} C$ $T_i = 25 (125) ^{\circ} C$		10 (16)	13 (19)	mΩ		
C _{ies}	$V_{CF} = 25 \text{ V}, V_{GF} = 0 \text{ V}, f = 1 \text{ MHz}$		4,8	10 (10)	nF		
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1		nF		
C _{res}	V _{CF} = 25 V, V _{GF} = 0 V, f = 1 MHz		0,6		nF		
R _{th(j-s)}	per IGBT		0,5		K/W		
t _{d(on)}	under following conditions		80		ns		
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns		
$t_{d(off)}$	$I_{Cnom} = 70 \text{ A}, T_j = 125^{\circ}\text{C}$		390		ns		
t_f	$R_{Gon} = R_{Goff} = 9 \Omega$		90		ns		
E _{on}	inductive load		9		mJ		
E _{off}			7,7				
	nverter, Chopper						
$V_F = V_{EC}$	$I_{Fnom} = 70 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$		1,5 (1,5)	1,7 (1,7)	V		
$V_{(TO)}$	T _j = 25 (125) °C		1 (0,8)		V		
r _T	$T_{j} = 25 (125) ^{\circ}C$		7,1 (10)	8,6 (11)	mΩ		
$R_{th(j-s)}$	per diode		0,7		K/W		
I _{RRM}	under following conditions		77		Α		
Q_{rr}	I _{Fnom} = 70 A, V _R = 600 V		18		μC		
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		7,5		mJ		
	di _F /dt = 2000 A/μs						
Diode - R	ectifier						
V_{F}	$I_{Fnom} = 35 \text{ A}, T_j = 25 \text{ °C}$		1,1		V		
$V_{(TO)}$	T _j = 150 °C		0,8		V		
r_T	$T_{j} = 150 ^{\circ}\text{C}$		11		mΩ		
$R_{th(j-s)}$	per diode		0,9				
Tempera	ture Sensor						
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω		
Mechanic	cal Data						
W			95		g		
M _s	Mounting torque	2		2,5	Nm		











3 08-07-2009 LAN © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

pinout, dimensions

z81'6¢

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.