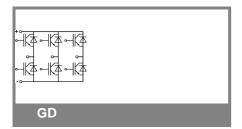


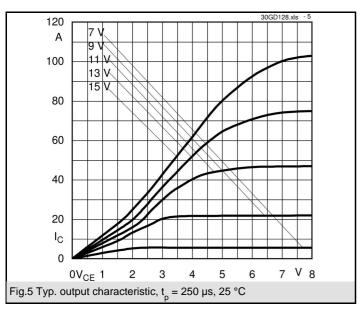
IGBT Module

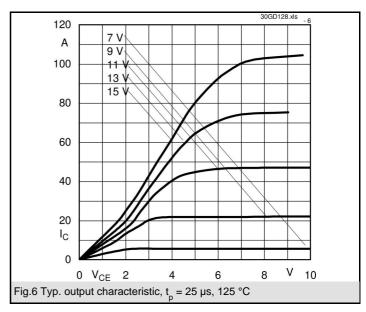
SK 30 GD 128

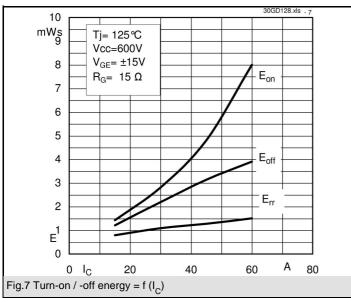
Preliminary Data

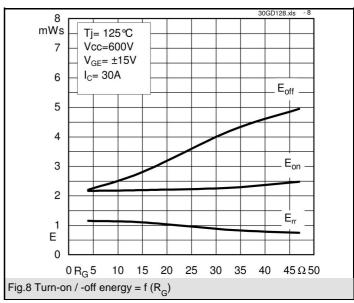
Features

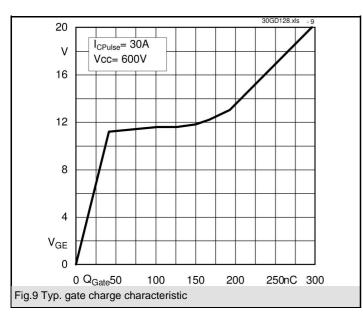

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- SPT=Soft-Puntch-Through technology
- V_{ce(sat)} with positive coefficient

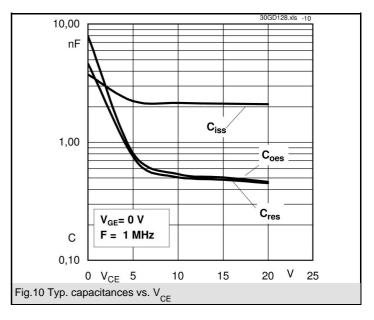

Typical Applications

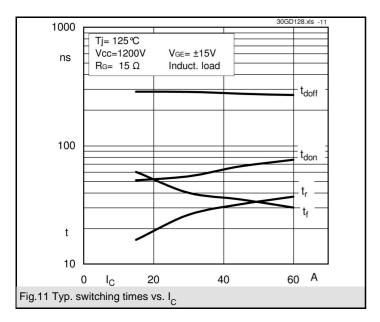

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

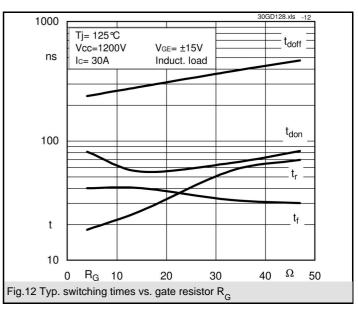

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	$T_s = 25 (80) ^{\circ}C;$	35 (25)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	70 (50)	Α				
T _j	·	- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	37 (25)	Α				
$I_{FM} = -I_{CM}$	t_p < 1 ms; T_s = 25 (80) °C;	74 (50)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

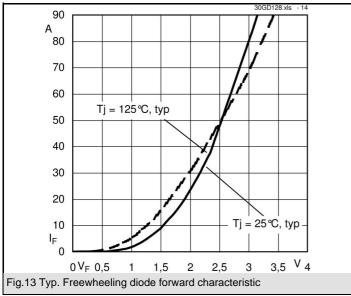

Characteristics		T_s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{CE(sat)}	I _C = 25 A, T _i = 25 (125) °C		1,9 (2,1)		V
$V_{GE(th)}$	$V_{CE} = V_{GE}$; $I_{C} = A$	4,5	5,5	6,5	V
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		2,5		nF
$R_{th(j-s)}$	per IGBT			1	K/W
	per module				K/W
	under following conditions:				
$t_{d(on)}$	V _{CC} = 600 V , V _{GE} = ± 15 V		55		ns
t _r	I _C = 30 A, T _j = 125 °C		26		ns
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 15 \Omega$		284		ns
t _f			40		ns
$E_{on} + E_{off}$	Inductive load		4,99		mJ
Inverse/F	reewheeling CAL diode				
$V_F = V_{EC}$	I _F = 25 A; T _i = 25 (125) °C		2 (1,8)		V
V _(TO)	$T_{i} = (125) ^{\circ}C$		(1)	(1,2)	V
r _T	$T_{j} = (125) ^{\circ}C$		(32)	(44)	mΩ
$R_{th(j-s)}$				1,2	K/W
	under following conditions:				
I _{RRM}	I _F = 22 A; V _R = 600 V		25		Α
Q_{rr}	$dI_F/dt = -500 A/\mu s$		4,5		μC
E _{off}	V _{GE} = 0 V; T _j = 125 °C		1		mJ
Mechanic	al data	•			•
M1	mounting torque			2	Nm
w			19		g
Case	SEMITOP® 3		T 12		

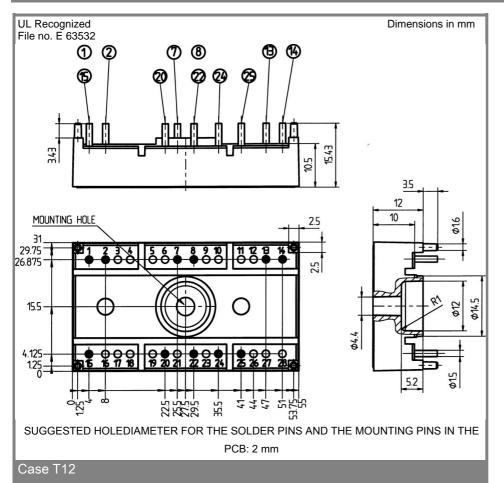


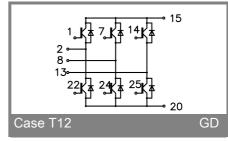












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.